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Approximate analytic solution for the spatiotemporal evolution
of wave packets undergoing arbitrary dispersion
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We apply expansion methods to obtain an approximate expression in terms of elementary functions for the
space and time dependence of wave packets in a dispersive medium. The specific application to pulses in a cold
plasma is considered in detail, and the explicit analytic formula that results is provided. When certain general
initial conditions are satisfied, these expressions describe the packet evolution quite well. We conclude by
employing the method to exhibit aspects of dispersive pulse propagation in a cold plasma, and suggest how
predicted and experimental effects may be compared to improve the theoretical description of a medium’s
dispersive properties.@S1063-651X~97!13903-4#

PACS number~s!: 03.40.Kf, 42.25.Bs, 52.35.Hr
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I. INTRODUCTION

A systematic study of the propagation of electromagne
pulses in a dispersive medium originated with Sommerf
@1,2# and Brillouin @3,4#. The subject has subsequently be
studied by means of a number of interesting methods
novel interpretations; see, for example, references@5–8# and
references therein. Some of these methods are extensio
the classic Sommerfeld-Brillouin theory.

The purpose of this paper is firstly to provide an analy
expression for the behavior of dispersive wave packets
use of a straightforward method@see Eq.~8!#, along with a
description of the initial conditions that must be satisfied
order to render this expression valid. Secondly, we furn
the explicit formula that results when the method is appl
to the case of Gaussian pulses in a cold plasma@see Eq.
~16!#. We conclude by using the method to discuss and
hibit features of the dispersive propagation and interaction
multiple pulses in such a plasma.

II. GENERAL METHOD

The method we employ is based on Taylor expans
techniques and Gaussian wave packet expansion techn
that allow required integrals to be computed exactly. Mo
specifically, we expand an initial wave packet as a super
sition of Gaussian packets, then power expand the disper
relation to second order around the dominant wave num
of each Gaussian. This allows for an exact solution of
Fourier integral describing the evolution of the packet.

We take as our starting point the standard linear Fou
integral @9,10# describing the propagation of a pulseE(x,t)
in a medium of dispersionv(k):

E~x,t !5E
2`

`

A~k!ei [kx2v~k!t]dk, ~1!

whereA(k) must be chosen to satisfy the initial bounda
conditions forE(x,t) @9#. For simplicity, we assume tha
(d/dt)E(x,0)50, so thatA(k) is just the Fourier transform
of the initial pulseE(x,0)5E0(x) @9,10#,
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A~k!5
1

2pE2`

`

E0~x!e2 ikxdx. ~2!

We then take the real part of Eq.~1!, assumeA(k) is real,
and denote ReE(x,t) by E(x,t) for simplicity

E~x,t !5E
2`

`

A~k!cos@kx2v~k!t#dk. ~3!

The next step is to find a fit toE0(x) in the form of a
superposition of sinusoidal wave packets with a Gauss
envelope

E0~x!5(
i51

n

f ie
2aix

2
cos~bix!, ~4!

where the constantsai ,bi , f i are real, andai.0. Such a fit
can normally be found for a localized initial packetE0(x).
The Fourier transform of Eq.~4! can then be found exactly a

A~k!5
1

2pE2`

`

E0~x!e2 ikxdx

5
1

4Ap
(
i51

n
f i

Aai
@e~21/4ai !~k2bi !

2
1e~21/4ai !~k1bi !

2
#.

~5!

This amplitude is real, so the assumption below Eq.~2! is
valid. The dominant wave numbers in Eq.~5! are 6bi ,
i51,n, so we expand the dispersion relationv(k) to second
order around each point6bi , i51,n, separately,

v~k,6bi !5s0~6bi !1ks1~6bi !1k2s2~6bi !. ~6!

Equation~6! constitutes 2n expansions ofv(k), each expan-
sion being centered around one of the 2n points 6bi ,
i51,n. The coefficientssj (6bi) will in general depend on
the parameters describing the dispersion relationv(k) of the
dispersive medium.

We can now obtain a good approximation to Eq.~3! by
using Eqs.~5! and~6! to expand the integrand in Eq.~3! as a
sum of 2n terms, where each term is centered on the ma
wave numbers6bi , i51,n of the initial packet:
3647 © 1997 The American Physical Society
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E~x,t !5
1

4Ap
(
i51

n
f i

Aai
H E

2`

`

e~21/4ai !~k2bi !
2
cos@2ts0~bi !1k@x2ts1~bi !#2tk2s2~bi !#dk1~bi→2bi !J . ~7!

Note that Eq.~7! arises from a generalized expansion approach to Eq.~3!, since it incorporates an arbitrary number ofdifferent
expansion points6bi . The integrand in Eq.~3! is expanded to a sum of 2n Gaussian terms by substituting Eq.~5! into Eq.
~3!, and the only modification of a term occurs via a Taylor expansion~6! of the factorv(k) around the point where the term
is most influential. The advantage of the expansion~7! is that the resulting integrals can now be found analytically as

E~x,t !5
1

4(
i51

n
f i

Aai
HF1/4~ t,ai ,bi !expHF~ t,ai ,bi !~4ai !

21F @x2ts1~bi !#tbis2~bi !2
1

4
@x2ts1~bi !#

22t2bi
2s2

2~bi !G J
3cosS F~ t,ai ,bi !F ~4ai !22$@x2ts1~bi !#bi2t@bi

2s2~bi !1s0~bi !#%1
1

4
@x2ts1~bi !#

2ts2~bi !2t3s2
2~bi !s0~bi !G

2
1

2
tan21@4tais2~bi !# D1~bi→2bi !J , ~8!
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whereF(t,ai ,bi)5@(4ai)
221t2s2

2(bi)#
21. Equation~8! is

useful in the sense that it is an explicit formula containi
only elementary functions, and in the sense that it is qu
general. All one needs to do to apply it to a specific situat
is to compute the power series of the dispersion rela
around the main wave numbers of the initial wave pack
The accuracy of the expression~8! will of course increase as
the number of expansion points are increased. The form
provides for expansions ofv(k) up to second order, but on
could also of course limit the order to unity by takin
s2(6bi)50 in Eq. ~8!.

We now discuss the initial conditions that must hold f
Eq. ~8! to be valid. From Eq.~5!, we see that the amplitude
of the two terms of the integrand in the contribution

1

4Ap

f i

Aai
E

2`

`

@e~21/4ai !~k2bi !
2
1e~21/4ai !~k1bi !

2
#

3cos@kx2v~k!t#dk ~9!

to E(x,t) in Eq. ~3! are maximal at the pointsk5bi and
k52bi . The amplitudes decay exponentially ask moves
away from the points6bi , and aree21 of their maximal
value whenk is at a distance 2Aai from either point. At a
distance 5Aai , the amplitudes aree26.25'1.931023 of their
maximal value, which is so small that beyond this distan
one may consider the contribution~9! to be negligible. The
k intervals

I ~bi !5@bi25Aai ,bi15Aai #,

I ~2bi !5@2bi25Aai ,2bi15Aai # ~10!

may therefore be taken as the only two areas of thek line
where the contribution~9! to ~3! is appreciable.

In order for Eq.~8! to be applicable, one must require th
a contribution~9! ~for a specifici ) is appreciable only within
e
n
n
t.

la

e

the two areas of thek line where the two second order ex
pansionsv(k,6bi) of v(k) ~for the abovei ) in Eq. ~6! are
valid. The remainders uv(k)2v(k,bi)u and uv(k)
2v(k,2bi)u will in general be small over a certain interva
containingbi and another interval containing (2bi), respec-
tively. We denote the largest two such intervals over wh
uv(k)2v(k,bi)u and uv(k)2v(k,2bi)u are small by
I 8(bi) and I 8(2bi), respectively. These intervals depend
v(k) and 6bi @The remainder terms depend on the th
derivative ofv(k), as is well known from Taylor expansio
theory.# The requirement for Eq.~8! to be valid can accord-
ingly be stated as

I ~bi !,I 8~bi !, I ~2bi !,I 8~2bi ! ~ i51,n!. ~11!

Therefore, when the intervalsI 8(bi) and I 8(2bi) have
been determined fromv(k) and6bi , the domain of validity
of Eq. ~8! can be stated as an upper limit on the pulse sh
parametersai in Eq. ~4!, as noted from Eq.~10!. Note that
then criteria in Eq.~11! are independent, since the resulta
packetE(x,t) in Eq. ~3! is a linear combination ofn inde-
pendent contributions of the form~9!, as seen from Eq.~5!.

III. COLD PLASMA APPLICATION

We now consider the specific case of a pulse propaga
in a cold plasma. For simplicity, we assume that the init
pulse can be approximated well by a single normaliz
Gaussian packet centered atx50,

E0~x!5e2ax2cos~bx!. ~12!

In this case, Eq.~8! must be applied with the paramete
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n51, ai5a, bi5b, f i51. ~13!

For the cold plasma, we use the dispersion relation@11#

v~k!5Ac2k21vp
2, ~14!

wherec is the speed of light in vacuum, andvp is the plasma
frequency.

We then expand Eq.~14! aroundb and2b, to obtain the
coefficients in Eq.~6! as
iv
-

l

n

q
w-

th
o
a
fo
s0~b!5 3
2 ~c2vp

2b212vp
4!B3/2, s1~b!5c4b3B3/2,

s2~b!5 1
2c

2vp
2B3/2,

s0~2b!5s0~b!, s1~2b!52s1~b!, s2~2b!5s2~b!,
~15!

where B5(b2c21vp
2)21. These coefficients are genera

since they are functions of the initial pulse parameterb.
Substitution of Eqs.~13! and ~15! into Eq. ~8! yields
E~x,t !5 1
4 a

21/2T1/4exp$~x2tb3c4B3/2!tbc2vp
2~8a!21B3/22~x2tb3c4B3/2!2~16a!21T2t2b2c4vp

4~16a!21B3%

3cos$T@ 1
16 ~x2tb3c4B3/2!a22b1 1

8 ~x2tb3c4B3/2!2tc2vp
2B3/22 1

16 ta
22B3/2~2b2c2vp

21vp
4!

2 1
8 t

3vp
4c4B9/2~3b2c2vp

212vp
4!#2 1

2 tan
21~2tac2vp

2B3/2!%1~b→2b!, ~16!
be-
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where T5( 1
16a

221 1
4t
2c4vp

4B3)21 and B5(b2c21vp
2)21.

Equation~16! is a general equation, describing the dispers
behavior of pulses of the form~12! that propagate in a me
dium with dispersion of the form~14!.

The intervalsI (6bi) and the validity criteria for Eq.~16!
are found by substitution of Eq.~13! in Eqs. ~10! and ~11!.
Since the dispersion relationv(k) in Eq. ~14! is symmetric
aboutk50, the validity criteria in Eq.~11! simplify. A sec-
ond order expansionv(k,b) of the square root
v(k)5Ac2k21vp

2 about a positive wave numberb approxi-
matesv(k) quite well whenk.0, but fails whenk,0. One
must therefore require the intervalI (b) in Eq. ~10! to lie to
the right of the origin of thek line. According to Eq.~10!,
the left end point ofI (b) is to the right of the origin when
b.5Aa. I (b) then lies within@0,b15Aa#, which is within
the intervalI 8(b) of validity of the expansionv(k,b) @given
by Eqs.~6! and~15!# of v(k) @given by Eq.~14!#. A similar
result holds for the expansionv(k,2b) of Ac2k21vp

2 about
a negative wave number2b. Hence, we have the usefu
initial condition that

b

Aa
.5 ~17!

for Eq. ~16! to be valid. In other words, the approximatio
~16! is accurate when the frequencyb of the initial pulse
E0(x) in Eq. ~12! is high, or whenE0(x) is broad~i.e., when
the pulse shape parametera is small!. However, we see from
Eq. ~17! that short pulses are also well approximated by E
~16! when they are of high frequency, as well as lo
frequency pulses of long duration.

In the specific illustrations and discussions below,
pulse parametersa andb were of course always chosen s
that Eq. ~17! was satisfied, with many choices such th
b/Aa@5. As a double check, we also compared values
E(x,t) given by Eq.~16! with the values forE(x,t) obtained
by numerically integrating Eq.~3! @using Eqs.~5!, ~12!, ~13!,
and ~14!# for a systematic variation of values forx, t, a, b,
c, and vp . For values ofa and b obeying Eq.~17!, the
e

.

e

t
r

agreement was excellent, as expected. The discrepancy
tween the exact and approximate values forE(x,t) was typi-
cally found to be less than 1024.

Equation~16! represents two pulses traveling in oppos
directions, as we expect@10# from the initial condition
(d/dt)E(x,0)50, stated above Eq.~2!. For simplicity, in the
remaining part of this paper we focus only on the righ
traveling pulse term in Eq.~16! @which is the first term in Eq.
~16! whenb is positive#.

We now outline some of the features of the dispers
behavior of a single pulse in a cold plasma, which can
observed from plots of Eq.~16!. It is readily observed tha
the envelope of a short initial pulse broadens more rapidly
time elapses compared to the broadening of the envelop
a long initial pulse, the initial pulse frequencies being equ
This is of course well known, and can be explained anal
cally @10#.

It is also seen that, in general, the number of oscillatio
within the pulse envelope increases with time, and, m
interestingly, the effect of dispersion on the pulse is to sh
high-frequency components of the pulse toward the spa
front of the pulse and low-frequency components of t
pulse toward the spatial rear of the pulse~see the pulse
EE1 in Fig. 4!. This effect becomes more prominent as t
initial pulse is shortened.

Additionally, the spatial packet velocity of a pulse in
creases as the pulse frequency is increased~with spatial
packet velocity we meanxmax/t, wherexmax is the distance
traveled by the spatial maximum of the pulse envelope d
ing a given time periodt. The temporal pulse velocity is
similarly defined asx/tmax, where tmax is the time that
elapses before the temporal maximum of the pulse enve
appears at a given distancex @5#!. However, as expected, in
no cases is the center of a packet beyond the pointx5ct at
time t if it is at the originx50 at timet50. Herec is the
velocity of light in vacuum, appearing in Eq.~16! from the
dispersion relation~14!.

Moreover, the envelope shape is better maintained fo
high frequency initial pulse than for a low frequency initi
pulse, the initial pulse durations being equal. Therefore,
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creasing the frequency of a short pulse will improve the pr
ervation of its shape as it travels through a dispersive
dium, as well as increase its packet speed. The propaga
of short, high-frequency pulses is a topic of strong curr
interest@12,13#.

We next examine the dispersive evolution of more th
one ~right-traveling! pulse through a cold plasma. One c
readily do this by repetitive use of Eq.~16!. For example, the
propagation of two initial pulsesE01(x)5e2a1x

2
cos(b1x) and

E02(x)5e2a2x
2
cos(b2x) separated by an initial time delayd

is described by

E~x,t !5EE1~x,t !1EE2~x,t !, ~18!

whereEE1(x,t) and EE2(x,t) are obtained by substitutin
(t→t1d, a→a1, b→b1) and (a→a2, b→b2), respectively,
into Eq. ~16!. The first pulseEE1 is hered time units ahead
of the second pulseEE2 whenEE2 passes the originx50 at
the time t50. @A description of the general dispersive b
havior ofm initial pulsesE0 j of the form ~4! separated by
initial time delaysdj can analogously be obtained from E
~8! by the set of substitutionst→t1dj , ai→ai j , bi→bi j for
i51,n and j51,m.#

Figures 1 through 4 depict some features of dispers
double pulse propagation, as described by Eqs.~16! and~18!.
These figures also illustrate some of the properties of sin
pulse propagation mentioned above.@Note that the packets in
the top plots of Figs. 1 and 3 at the initial timet50 are
identical to those given by Eq.~12!, except that their ampli-
tudes have half the magnitude of those in Eq.~12!. This is

FIG. 1. Temporal evolution of two pulsesEE1 ~right! andEE2

~left! in a cold plasma, obtained from Eqs.~16! and~18!. The initial
time delay between the two packets isd51.5. Both pulses are iden
tical, with initial-value parametersa15a2510 and b15b2
520vp /c. The plasma is characterized byc51 andvp51. The
spatial distribution of the total fieldE(x,t)5EE1(x,t)1EE2(x,t) is
shown at timest50 ~top!, t5500 ~middle!, andt51000~bottom!.
-
e-
ion
t

n

e

le

because half of the energy of the initial packets is carried
the left-traveling parts ofE(x,t), which are omitted from all
plots.#

Figure 1 shows how two initially distinct packets of th
same frequency and duration gradually overlap and inte
with each other due to the dispersive stretching of the t
packets as time elapses. Figure 2 shows the results of
interaction after a very long time. One can clearly see
emergence of constructive and destructive interference
fects among the different spatial regions of the coalesc
pulses.

FIG. 2. Same as in Fig. 1, but fort55000 ~top! and
t5100 000~bottom!.

FIG. 3. Temporal evolution of two pulsesEE1 ~right! andEE2

~left! in a plasma, whereEE1 is characterized bya155,
b1520vp /c, EE2 by a25100, b2560vp /c, and the plasma by
c51, vp51, and Eq.~14!. EE1 is initially d51.1 time units ahead
of EE2. The spatial distribution of the total field
E(x,t)5EE1(x,t)1EE2(x,t) is shown at timest50 ~top!, t5500
~middle!, andt51000 ~bottom!.
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In Fig. 3, a high frequency, short pulse is dispatched a
the dispatch of a low frequency, long pulse. We see that
high frequency pulse eventually overtakes the low freque
pulse, in accord with the single-pulse feature that the pac
velocity is greater for a high frequency initial pulse than
low frequency initial pulse. The middle and bottom plo
show how the high frequency pulse interferes with the va
ous spatial parts of the low frequency pulse. The bottom p
depicts an instant of constructive interference between

FIG. 4. Spatial dependence of a packetEE1(x,t) ~top! and a
packetEE2(x,t) ~middle! after they have both traversed a co
plasma@characterized byc51,vp51, and Eq.~14!# for a period of
t51000 time units. Initially,EE1 was d51.1 time units ahead o
EE2. EE1 is characterized bya1510, b1520vp /c and EE2 by
a252, b2540vp /c. The bottom plot shows the total fiel
E(x,1000)5EE1(x,1000)1EE2(x,1000).
r
e
y
et

i-
t
e

two pulses, where the total amplitude is larger than the se
rate amplitudes of either pulse. For longer times than th
shown in the figure, the high frequency pulse eventua
passes and leaves the other pulse.

As a final example of a usage of Eq.~16!, one may em-
ploy this equation to determine parametersaj , bj , and initial
time delaysdj ( j5 i ,m), of m pulses such that they will al
have the same width and completely overlap at a speci
time t while propagating in a plasma of dispersion chara
terized byc, vp and Eq.~14!. Figure 4 shows a two-pulse
version of this, witht51000. We see that strong destructiv
and constructive interference effects occur in this case
comparison of such predicted effects with those found
perimentally in a specific medium could be used to det
mine the medium’s dispersion relationv(k).

IV. SUMMARY AND CONCLUSIONS

We have provided an analytic expression describing
propagation of dispersive wave packets@Eq. ~8!# provided
the packets satisfy the applicability criteria~11!. The expres-
sion is obtained by a clear-cut method, and can be use
study properties of the propagation process~for example,
pulse velocity and multiple pulse interference effects due
dispersion!.

In the specific case of packets propagating in a c
plasma, we used Eq.~8! with two terms, and provided the
explicit, analytic expression that results in this case@Eqs.
~16! and ~18!#. For initial pulses satisfying the conditio
~17!, Eq. ~16! gives an accurate description of single or mu
tiple pulse propagation in a dispersive cold plasma.

As a final note, it is conceivable that the presence or n
presence of effects predicted by Eqs.~8! and ~16! could be
used to verify, improve the equations for, or determine
substance’s dispersive properties.
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