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Approximate analytic solution for the spatiotemporal evolution
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We apply expansion methods to obtain an approximate expression in terms of elementary functions for the
space and time dependence of wave packets in a dispersive medium. The specific application to pulses in a cold
plasma is considered in detail, and the explicit analytic formula that results is provided. When certain general
initial conditions are satisfied, these expressions describe the packet evolution quite well. We conclude by
employing the method to exhibit aspects of dispersive pulse propagation in a cold plasma, and suggest how
predicted and experimental effects may be compared to improve the theoretical description of a medium'’s
dispersive propertie$S1063-651X%97)13903-4

PACS numbe(s): 03.40.Kf, 42.25.Bs, 52.35.Hr

I. INTRODUCTION 1 (= )

A(k)= EJ Eo(x)e™ kdx. 2
A systematic study of the propagation of electromagnetic o

pulses in a dispersive medium originated with Sommerfeldy/e then take the real part of E(L), assumeA(K) is real,

[1,2]_ and Brillouin[3,4]. The subject _has subsequently beengnd denote Re(x,t) by E(x,t) for simplicity

studied by means of a number of interesting methods and

novel interpretations; see, for example, refereries8] and -

referencesptherein. Some of these rrr)1ethods are extensions to E(xD= JlmA(k)cos{kx—w(k)t]dk. ©)
the classic Sommerfeld-Brillouin theory.

The purpose of this paper is firstly to provide an analytic The next step is to find a fit t&y(x) in the form of a
expression for the behavior of dispersive wave packets bguperposition of sinusoidal wave packets with a Gaussian
use of a straightforward methddee Eq.(8)], along with a  envelope n
description of the _initial cond_itions t_hat must be satisfied_in Eo(X):z fie*aixzcoibix)’ (4)
order to render this expression valid. Secondly, we furnish i=1
the explicit formula that results when the method is applied
to the case of Gaussian pulses in a cold plagse® Eq. Where the constanis; ,b;,f; are real, andy;>0. Such a fit
(16)]. We conclude by using the method to discuss and excan normally be found for a localized initial packeg(x).
hibit features of the dispersive propagation and interaction off he Fourier transform of E¢4) can then be found exactly as

multiple pulses in such a plasma. 1 (= .
A(k)=zf mEo(x)e"kde
Il. GENERAL METHOD
The method we employ is based on Taylor expansion :L : L[e<—1/4ai>(k—bi)2+e(—1/4ai><k+bi>2]
techniques and Gaussian wave packet expansion techniques 4\/;i:1 \/Ei '
that allow required integrals to be computed exactly. More (5)

specifically, we expand an initial wave packet as a superpo-
sition of Gaussian packets, then power expand the dispersiorhis amplitude is real, so the assumption below Bj.is
relation to second order around the dominant wave numberalid. The dominant wave numbers in E(p) are +b;,
of each Gaussian. This allows for an exact solution of thé =1,n, so we expand the dispersion relatie(k) to second
Fourier integral describing the evolution of the packet. order around each pointb;, i =1,n, separately,

We take as our starting point the standard linear Fourier
integral[9,10] describing the propagation of a pulE€x,t) (K, =bj)=so( = by) Tksy(£by) Tk*s(£b).  (6)

in a medium of dispersiom(k): Equation(6) constitutes B expansions of(k), each expan-

. sion being centered around one of the Ppoints *=b;,
E(x,t)=J A(k)e'lkx-e®t gy (1)  i=1n. The coefficientss;(=b;) will in general depend on
—o the parameters describing the dispersion relati¢k) of the
dispersive medium.
where A(K) must be chosen to satisfy the initial boundary We can now obtain a good approximation to E8). by
conditions forE(x,t) [9]. For simplicity, we assume that using Egs(5) and(6) to expand the integrand in EB) as a
(d/dt)E(x,0)=0, so thatA(k) is just the Fourier transform sum of 2n terms, where each term is centered on the major
of the initial pulseE(x,0)=Ey(x) [9,10], wave numberstb;, i=1,n of the initial packet:
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n

) e<*1’4ai><k*bi>2co{ —tsg(b;) + K[ x—ts;(b;)]—tk?s,(b;) Jdk+ (bj— —b;) } . 7)

I

E(x,t)=

Note that Eq(7) arises from a generalized expansion approach tgFgsince it incorporates an arbitrary numberdifferent
expansion pointstb;. The integrand in Eq(3) is expanded to a sum ofni2Gaussian terms by substituting E§) into Eq.
(3), and the only modification of a term occurs via a Taylor expané&of the factorw(k) around the point where the term
is most influential. The advantage of the expangifnis that the resulting integrals can now be found analytically as

n

E(x,t)= %Z j—;_[ FU4t,a ,bi)exp{ F(t,a;,b;)(4a,) !

=1

[X—tsy(bj) Jthisy(b;) — %[X_tsl(bi)]z_tzbizsg(bi)}]

XCOS{ F(t,a;,by)| (4a)  H[x—tsy(b;)]b; —t[bZsy(by) +so(by) I} + %[X_tsl(bi)]ztsz(bi)_t3sg(bi)50(bi)}

1
- Etan* 1 4ta;s,(b;)]

+(bi—>—bi)), ®

where F(t,a; ,b;) =[(4a;) "2+12s5(b;)] *. Equation(8) is  the two areas of th& line where the two second order ex-
useful in the sense that it is an explicit formula containingpansionsw(k,=b;) of w(k) (for the above) in Eqg. (6) are
only elementary functions, and in the sense that it is quitevalid. The remainders |o(k)—w(k,b;)| and |w(k)
general. All one needs to do to apply it to a specific situation— »(k,—b;)| will in general be small over a certain interval
is to compute the power series of the dispersion relatiortontainingb; and another interval containing-(;), respec-
around the main wave numbers of the initial wave packettively. We denote the largest two such intervals over which
The accuracy of the expressié) will of course increase as |,(k)— w(k,b;)| and |w(k)—w(k,—b;)| are small by
the number of expansion points are increased. The formul@(bi) andl’(—b,), respectively. These intervals depend on
provides for expansions @ (k) up to second order, but one (k) and =b, [The remainder terms depend on the third

could also of course limit the order to unity by taking derivative ofw(k), as is well known from Taylor expansion

s,(xb;)=0 in Eq.(8). : . |
We now discuss the initial conditions that must hold fort[heory] The requirement for Eq8) to be valid can accord

Eq. (8) to be valid. From Eq(5), we see that the amplitudes ingly be stated as
of the two terms of the integrand in the contribution

|(bi)C|,(bi), |(_bi)C|,(_bi) (i=1,n). (11)

1 f fw [~ 14a) (k=b)? | o~ 1)) (k+b;)*]

4w Ja - Therefore, when the intervals (b;) and1’(—b;) have
been determined frona(k) and+ b;, the domain of validity
X cog kx—w(k)t]dk (9 of Eq.(8) can be stated as an upper limit on the pulse shape

) ) ) parameters; in Eqg. (4), as noted from Eq(10). Note that
to E(x,t) in Eq. (3) are maximal at the pointe=b; and  hep criteria in Eq.(11) are independent, since the resultant
k=—bj. The amplitudes decay expﬁolnentlally Smoves  packetE(x,t) in Eq. (3) is a linear combination of inde-
away from the pointstb;, and aree™ " of their maximal pendent contributions of the fork®), as seen from Eq5).
value whenk is at a distance Za; from either point. At a

distance 5/a;, the amplitudes are™®2°~1.9x 10~ 2 of their

maximal value_, which is so .smgll that beyond' t_his distance IIl. COLD PLASMA APPLICATION
one may consider the contributidf) to be negligible. The
k intervals We now consider the specific case of a pulse propagating
in a cold plasma. For simplicity, we assume that the initial
I(b;)=[b;—5+a;,b,+5a], pulse can be approximated well by a single normalized

Gaussian packet centeredxat O,

I(—by)=[—b;—5a;, —b;+5+a] (10

may therefore be taken as the only two areas ofktHime Eo(X)=e’axzcos(bx). (12
where the contributiori9) to (3) is appreciable.

In order for Eq.(8) to be applicable, one must require that
a contribution(9) (for a specifid) is appreciable only within In this case, Eq(8) must be applied with the parameters
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n=1, a=a, b;=b, f=1. (13 so(b)=3(c?wib?+2w7)B¥2,  s,(b)=c*b’B%?
For the cold plasma, we use the dispersion relaftii] s,(b)= %CZ(D’Z}BWZ,
o(k)=e?k*+ o, (14 sy(~=b)=sg(b), sy(~b)=—s1(b), Sx(~b)=s,(b),
1
wherec is the speed of light in vacuum, ang, is the plasma @3
frequency. where B=(b%c?+w?) ! These coefficients are general,
We then expand Ed14) aroundb and —b, to obtain the since they are functions of the initial pulse paraméter
coefficients in Eq(6) as Substitution of Eqs(13) and(15) into Eq. (8) yields

E(x,t)= §a Y2T"%exp{(x—tb3c*B¥)tbc?w}(8a) "B¥?— (x—th3c*B¥?)?(16a) 'T—t%b%c*wj(16a) 'B%}
x cog T[ 15 (x—tb3c*B¥%)a~2b+ § (x—th3c*B¥?)%tc?w;B3?~ §s ta ?B¥%(2b%c?w) + w))

— § Bwpc*BY%(3b%c?w; +2w;) |- stan (2tac?w;B¥?)} + (b——b), (16)

where T=(fa 2+ it’c’w;B%) ' and B=(b%?+wj;)"'.  agreement was excellent, as expected. The discrepancy be-
Equation(16) is a general equation, describing the dispersiveéween the exact and approximate valuesEex,t) was typi-
behavior of pulses of the forrfl2) that propagate in a me- cally found to be less than 10.
dium with dispersion of the forni14). Equation(16) represents two pulses traveling in opposite
The intervald (+b;) and the validity criteria for Eq(16)  directions, as we expedtl0] from the initial condition
are found by substitution of Eq13) in Egs.(10) and (11). (d/dt)E(x,0)=0, stated above Eq2). For simplicity, in the
Since the dispersion relation(k) in Eg. (14) is symmetric  remaining part of this paper we focus only on the right-
aboutk=0, the validity criteria in Eq(11) simplify. A sec- traveling pulse term in Eq16) [which is the first term in Eq.
ond order expansionw(k,b) of the square root (16) whenb is positivel.
w(k)= \/czkz—er;‘)r about a positive wave numbbrapproxi- We now outline some of the features of the dispersive
matesw(k) quite well whenk>0, but fails wherk<0. One behavior of a single pulse in a cpld pla§ma, which can be
must therefore require the interviglb) in Eq. (10) to lie to ~ observed from plots of _Eq.16). It is readily observed that
the right of the origin of thek line. According to Eq(10),  the envelope of a short initial pulse broadens more rapidly as
the left end point ofl (b) is to the right of the origin when time elapses compared to the broadening of the envelope of
b>5./a. I(b) then lies within[0,b+5+/a], which is within & I(_)n_g initial pulse, the initial pulse frequencies pelng equa_l.
the intervall (b) of validity of the expansiom(k,b) [given This is of course well known, and can be explained analyti-
by Eqs.(6) and(15)] of w(K) [given by Eq.(14)]. A similar ~ Cally [10) _ -
result holds for the expansian(k, — b) of \/mg about It is also seen that, in general, the number of oscillations

2 neaative wave numberb. Hence. we have the useful within the pulse envelope increases with time, and, more
a neg . ' ' interestingly, the effect of dispersion on the pulse is to shift
initial condition that

high-frequency components of the pulse toward the spatial
front of the pulse and low-frequency components of the
£>5 (17) pulse toward the spatial rear of the puléee the pulse
Ja Eg, in Fig. 4). This effect becomes more prominent as the
initial pulse is shortened.
for Eq. (16) to be valid. In other words, the approximation  Additionally, the spatial packet velocity of a pulse in-
(16) is accurate when the frequengyof the initial pulse creases as the pulse frequency is increaseith spatial
Eo(x) in EQ.(12) is high, or wherEy(x) is broad(i.e., when  packet velocity we mear,,/t, wherexa is the distance
the pulse shape parameters smal). However, we see from traveled by the spatial maximum of the pulse envelope dur-
Eqg. (17) that short pulses are also well approximated by Eqing a given time period. The temporal pulse velocity is
(16) when they are of high frequency, as well as low-similarly defined asx/tn.., where t,, is the time that
frequency pulses of long duration. elapses before the temporal maximum of the pulse envelope
In the specific illustrations and discussions below, theappears at a given distangd5]). However, as expected, in
pulse parametera andb were of course always chosen so no cases is the center of a packet beyond the pointt at
that Eq. (17) was satisfied, with many choices such thattimet if it is at the originx=0 at timet=0. Herec is the
b/\a>5. As a double check, we also compared values fowvelocity of light in vacuum, appearing in E¢L6) from the
E(x,t) given by Eq.(16) with the values folE(x,t) obtained dispersion relatiori14).
by numerically integrating Eq3) [using Eqs(5), (12), (13), Moreover, the envelope shape is better maintained for a
and (14)] for a systematic variation of values far t, a, b, high frequency initial pulse than for a low frequency initial
¢, and w,. For values ofa and b obeying Eq.(17), the  pulse, the initial pulse durations being equal. Therefore, in-
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Figure 1 shows how two initially distinct packets of the
same frequency and duration gradually overlap and interact
with each other due to the dispersive stretching of the two
time delay between the two packetdlis 1.5. Both pulses are iden- _packet$ as time elapses. Flgwe 2 shows the results of the
tical, with initial-value parametersa,=a,=10 and b,=b, interaction after a very Ilong time. One can plearly see the
—20w,/c. The plasma is characterized by-1 andw,=1. The emergence of con_structlve anc_zl destructlve mterference_ef-
spatial distribution of the total fielli(x,t) = Eg,(x,t)+ Egn(x,t) is  fects among the different spatial regions of the coalescing
shown at timeg=0 (top), t="500 (middle), andt=1000(bottory.  Pulses.

998 1000 1002
x

FIG. 1. Temporal evolution of two pulsés; (right) and Eg,
(left) in a cold plasma, obtained from Eq46) and(18). The initial

creasing the frequency of a short pulse will improve the pres-

0.8
ervation of its shape as it travels through a dispersive me- z-g
dium, as well as increase its packet speed. The propagation S 02
of short, high-frequency pulses is a topic of strong current % -02
interest[12,13. 04
We next examine the dispersive evolution of more than be

one (right-traveling pulse through a cold plasma. One can 0 1 2
readily do this by repetitive use of E(L6). For example, the 0.8
propagation of two initial pulseBq;(x)=¢e" a1xzcosb1x) and gfg
Eoz(x)=e‘a2xzcosb2x) separated by an initial time delal § 0.2
is described by =z 09
R 04
E(X,t)=Eg1(X,t) + Ega(X,1), (18) e

500 501 502

where Egq(x,t) and Eg,(X,t) are obtained by substituting

(t—t+d,a—ay, b—b;) and @—a,, b—b,), respectively, 98
into Eq. (16). The first pulseEg; is hered time units ahead g 04
of the second pulsEg, whenEg, passes the origin=0 at S 0‘5
the timet=0. [A description of the general dispersive be- g :3-3
havior of m initial pulsesEg; of the form (4) separated by '2:2

initial time delaysd; can analogously be obtained from Eq. . 999 1001
(8) by the set of substitutiorts~t+d;, a;—a;; , bj—bj; for
i=1lnandj=1m.]

Figures 1 through 4 depict some features of dispersive g\ 3. Temporal evolution of two pulsé:; (right) and Ec,
double pulse propagation, as described by Etf.and(18).  (eft) in a plasma, whereEg, is characterized bya,=5,
These figures also illustrate some of the properties of singlglzzowp/C, Eg, by a,=100, b,=60w,/c, and the plasma by
pulse propagation mentioned aboMsote that the packets in ¢=1, w,=1, and Eq(14). Eg, is initially d=1.1 time units ahead
the top plots of Figs. 1 and 3 at the initial time=0 are  of Eg,. The spatial distributon of the total field
identical to those given by Eq12), except that their ampli- E(x,t) =Eg(x,t) + Ega(x,t) is shown at times=0 (top), t=500
tudes have half the magnitude of those in EtR). This is  (middle), andt=1000 (bottom).

X
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0.8 two pulses, where the total amplitude is larger than the sepa-
s g:f, rate amplitudes of either pulse. For longer times than those
§ 0.2 shown in the figure, the high frequency pulse eventually
) _03‘/\A/\/V\/\N\A~‘ passes and leaves the other pulse.
& -3.461 As a final example of a usage of E@{.6), one may em-
20.8 ploy this equation to determine parametaysb; , and initial
999 1001 time delaysd; (j=i,m), of m pulses such that they will all
0.8 have the same width and completely overlap at a specified
_ 06 time t while propagating in a plasma of dispersion charac-
§ Z‘j terized byc, w, and Eq.(14). Figure 4 shows a two-pulse
g 02 version of this, witht=1000. We see that strong destructive
204 and constructive interference effects occur in this case. A
= :z-g comparison of such predicted effects with those found ex-
) 999 1001 perimentally in a specific medium could be used to deter-
03 mine the medium’s dispersion relati@n(k).
§ 3022 IV. SUMMARY AND CONCLUSIONS
g o
\:E _03 We have provided an analytic expression describing the
= -g-z propagation of dispersive wave pack¢Eq. (8)] provided
0.8 the packets satisfy the applicability critefibl). The expres-

999 1001
x

sion is obtained by a clear-cut method, and can be used to
study properties of the propagation procéks example,

_ pulse velocity and multiple pulse interference effects due to
FIG. 4. Spatial dependence of a packgt;(x,t) (top) and a

packet Eg,(x,t) (middle) after they have both traversed a cold dlslr;]ertﬂgmspeciﬁc case of packets propagating in a cold
plasmgcharacterized by=1, w,=1, and Eq(14)] for a period of plasma, we used Ed8) with two terms, and provided the
t=1000 time units. Initially,Eg; wasd=1.1 time units ahead of L . . P .
Ecs. Ee is characterized bya, =10, by—20w,/c and Eg, by explicit, analytic expression that results in this cakes.
a,=2, b,—40w,/c. The bottom plot shows the total field (16) and (18)]._ For initial pulses sat_|sf_y|ng th_e condition
E(x,1000)= Eg1(X,1000)+ E,(x,1000). (;7), Eqg.(16) gives an accurate desgrlptlon of single or mul-
tiple pulse propagation in a dispersive cold plasma.
. . - As a final note, it is conceivable that the presence or non-
In Fig. 3, a high frequency, short pulse is dispatched after :

the disp?atch of ag low ?reque)r/my, Iong pulse. Wg see that thB'©S€Nce Of. effgcts predicted by E_QB) and (16) could b_e
high frequency pulse eventually overtakes the low frequencused to V?”fy.' improve the equations for, or determine a
pulse, in accord with the single-pulse feature that the packe ubstance’s dispersive properties.
velocity is greater for a high frequency initial pulse than a
low frequency initial pulse. The middle and bottom plots
show how the high frequency pulse interferes with the vari- This work was supported by NSF Grant No. PHY94-
ous spatial parts of the low frequency pulse. The bottom plo5583. The numerical part of the work was done at the Labo-
depicts an instant of constructive interference between theatory for Laser Energetics.
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